Геомодификаторы

кс го рулетка ставки для бомжей .

В настоящее время в ряде научно — технических центров разрабатывается новое направление в автохимии и трибологии в целом. Это направление получило наименование «геотрибология» (от греческого г еос — земля) — т. е. трение, износ и смазывание в условиях применения различного рода минералов и других соединений геологического происхождения.
Геомодификатор (РВС — технология) — специальная добавка в смазочные материалы и технологические среды на базе минералов геологического (реже искусственного) происхождения, которые могут вступать во взаимодействие с контактируемыми (трущимися) участками деталей и формировать на них металлокерамический слой, частично устраняющий дефекты поверхностей трения.
Целью работ в этом направлении является создание специальных добавок в топливно — смазочные материалы, способствующих формированию металлокерамического слоя на контактирующих участках поверхностей трения, что приведет к частичному устранению дефектов и обеспечению высоких антифрикционных и противоизносных свойств. Такие материалы, главным образом на основе измельченного и модифицированного серпентина, а также других минералов естественного и искусственного происхождения, получили наименование «геомодификаторы» или РВС — технологии.
Началу исследований в данном направлении положило необычное явление, обнаруженное еще во времена Советского Союза при бурении сверхглубокой скважины на Кольском полуострове. Было выявлено, что при прохождении буровым инструментом (долотом) горных пород, богатых минералом серпентином (змеевиком), ресурс режущих кромок инструмента резко увеличивался.
Серпентин — группа природных минералов, которые встречаются в нескольких видах. Все серпентины — зеленые минералы, образующие жирные на ощупь массивные агрегаты и имеющие слоистую структуру, отдалённо напоминающую графит. Из серпентиновых пород добывают природный асбест (хризотил — асбест). Хризотил — асбест является минералом группы серпентинита, залегает жилами, в виде блестящих зеленоватых поперечно— или продольноволокнистых агрегатов. Элементарные волокна хризотила представляют собой свернутые в тончайшие трубочки серпентиновые листочки, различимые лишь под электронным микроскопом.
Формула серпентина — Mg6[Si4010](OH) 8, или 3MgO2SiO22H20 или (МgОН) 6Si4011Н2О.
Серпентин включает несколько минеральных видов:
— антигорит (Mg, Fe) 2+3[Si2O5](OH) 4;
— хризотил (клинохризотил, ортохризотил, парахризотил) Mg3[Si205](OH) 4;
— лизардит Mg5[(OH)8|Si4O10].
Компонентный состав серпентина: МgО — 43 %, SiO2 — 44 %, Н2О —12,1…12,9 % (серпентин содержит около 13 % конституционной воды (в виде ионов гидроксила ОН— и в единичных случаях ионов Н+, располагающихся в узлах кристаллической решетки минерала). Эта вода прочно удерживается внутри минерала при комнатной температуре, но выделяется при нагревании в температурном интервале 300…1300 °C. Выделение воды сопровождается разрушением кристаллической решетки минерала.
Рентгенофазовый анализ геомодификаторов показывает, что эти составы бывают двух видов: один содержит в основном 75…80 % лизардита и 10…15 % хризотила, другой, наоборот, — 10…15 % лизардита и 75…80 % хризотила.
Все слоистые силикаты состоят из двух сеток [Si205]2—, соединенных вместе катионами в компактные пакеты состава [Si4O10]4—. Особенностью каждой сетки [Si2O5]2— является наличие нескомпенсированного электростатического заряда, обусловленного тем, что сетки из кремнекислородных тетраэдров с одной стороны имеют одну свободную валентность, и это определяет появление тетраэдров отрицательного заряда только на одной стороне сетки. В сдвоенных пакетах [Si4O10]4— отрицательные заряды обеих сеток направлены внутрь пакета и скомпенсированы катионами Мg+. Фактически в слоистых пакетах [Si4O10]4— между двумя сетками состава [Si2O5]2— располагается бруситовый слой Мg (ОН) 2.
Специфическое строение слоистых силикатов — наличие пакетов, состоящих из гексагональных сеток — слоев, связанных друг с другом очень слабыми связями, определяет и свойства этих минералов: низкую твердость, весьма совершенную спайность и расщепляемость на тонкие пластинки.
Изучение данного явления проводилось в конце 80–х годов прошлого столетия в институте «МеханОбр» (г. Ленинград) под руководством академика В. И. Ревнивцева и при участии к. т. н. Т. Л. Маринича. Ими было установлено, что данный эффект — следствие разложения серпентина в зоне бурения с дополнительным выделением большого количества тепловой энергии. Вследствие этого наблюдается разогрев материала шарошки бурового долота, диффузия в него разложившихся элементов минерала и образование композиционной металлокерамической структуры, обладающей высокой твердостью и износостойкостью.
В 1992 году коллектив ученых (А. Ю. Хренов, Н. В. Уткин, В. В. Казарезов, А. И. Голубицкий, И. В. Никитин) из научно — производственной инновационной фирмы «ЭНИОН — БАЛТИКА» (Санкт — Петербург), созданной на базе ленинградского филиала «Федерация инженеров СССР «ЭНИОН»», продолжила работы над созданием препаратов на базе серпентина. Разработанный ими препарат был назван НИОД («Направленная ИОнизация Диспергированием»).
В январе 1993 года группа в следующем составе: ушедший из «ЭНИОН — БАЛТИКА» И. В. Никитин, а также А. К Агафонов, П. Б. Арацкий, С. И. Бахматов и Е. А. Гамидов, — выпустила первый ремонтно — восстановительный состав (РВС) на базе Кольских серпентинов. Ими были созданы две самостоятельные фирмы — «Промремонт» (Санкт — Петербург) и «Высокие технологии» (Харьков).
С апреля 1996 по сентябрь 1999 года И. В. Никитин работал с группой московских исследователей В. И. Неждановым и В. И. Ермаковым в научно — техническом центре «Конверс — Ресурс», который был образован Международным фондом конверсии для реализации РВС — технологии на практике.
В 1999 году специалистами новосибирской компании ЗАО «Промышленные технологии» подана заявка, а в 2001 году получен патент на изобретение собственного ремонтного состава, получившего торговое наименование — «Motor Doctor».
В настоящее время на отечественном рынке автохимии наиболее известными препаратами этого класса являются: синтезатор металлов F orsan nanoceramics, выпускаемый российской компанией «Нанопром»; восстановители RVS Technology, изготовляемые в Финляндии фирмой «RVC — ТЕС Оу» по лицензии НПО «Руспром — ремонт»; смазочные композиции марки Супротек компания «Супротек», а также нанокондиционер Fenom Nanotechnology российской компании «Автохимпроект».
Рассмотрим более подробно химический состав «геомодификаторов», механизм действия и основные свойства получаемых защитных покрытий.
Точный компонентный и количественный состав своих разработок фирмы держат в строжайшем секрете, поэтому здесь мы можем привести только результаты независимых исследований препаратов сторонними фирмами и литературно — патентного поиска.
По химическому и фазовому составу многие геомодификаторы представляют собой смесь классического магнезиально-железистого силиката (серпентина — Mg6{Si4O10}(OH) 8, являющегося формой целого ряда минеральных руд класса оливинов), конечными фазами которого являются форстерит Mg2SiO4 и фаялит Fe2SiO4, а также в незначительных количествах кремнезём SiO2 и доломит CaMg (CO3) 2.
В качестве основы (и в определенной степени растворителя) в геомодификаторах, например в ГТМ, используется осветительный керосин ГОСТ 10227—88 (38,5 % по объёму) в полусинтетическим моторном масле 10W-40 (60 %).
В ряде работ предлагается для повышения эффективности образования геомодификаторами керамических защитных покрытий в качестве дисперсионной среды дополнительно к силикатам металлов (антигорит — естественный силикат магния, ревдинскит — минерал, смесь силикатов магния и никеля и др.), измельченным до размера зёрен от 1 до 10 мкм, добавлять мономеры с непредельными связями (диметиловый эфир малеиновой кислоты, пропиоловая кислота и др.).
В основе метода лежит способность этих составов при определенных условиях диффундировать в глубину приповерхностного слоя металла атомов углерода, вызывая образование упрочняющих его дислокаций (возникновение «булатного» эффекта). Базой для этих препаратов служат синтетические порошки оксидов металлов — катализаторов. Их основой являются следующие серпентинизирующие ультрабазиты: амфибол, биотит, ильнетит, магнантит, коротковолокнистый асбест, лизоргит, пирротин, петрандит, серпентин, тальк, альфа, орто— и клинохризотил, халькопирит и т. д. Кроме того, в состав триботехнических смесей могут входить такие минералы, как каолинит, доломит, графит, шунгит.
В последнее время на рынке геомодификаторов появились препараты с новыми минеральными компонентами — бёмитом и цеолитом.
Минерал бёмит, названный по имени немецкого ученого — минералога XX века И. Бёма, в чистом виде в природе встречается довольно редко. Диаспор и бёмит, Al2O3. Н2О и AlO (OH), — полиморфные разновидности одноводного оксида алюминия, находятся в природе в составе бокситов в кристаллической и скрытокристаллической формах. При температуре около 500 °C диаспор и бёмит теряют кристаллизационную воду, превращаясь в безводный глинозем.
Бёмит — минерал из группы окислов и гидроокислов металлов (по имени немецкого минералога XX века И. Бёма (J. Böhm)), применяемый для изготовления ряда ремонтно — восстановительных препаратов автохимии.
Промышленностью налажено производство очень дешевого нанодисперсного искусственного бёмита. Исследования, проведенные в ГНУ ГОСНИТИ по применению синтезированного нанокристаллического бёмита в качестве добавок к смазочным материалам, показывают возможность повышения ресурса деталей и уменьшения трения в процессе эксплуатации на 30…33 %.
Цеолиты — минералы из группы водных алюмосиликатов щелочных и щелочноземельных элементов. В 1756 году Ф. Кронштедт обнаружил увеличение объема образца, сопровождающееся выделением воды из минерала стильбита (гидратированные силикаты алюминия) при нагревании. Поэтому он и ввел термин «цеолит» (в переводе с греческого «кипящий камень»). Оказалось, что подобным свойством обладают и другие минералы этого семейства: клиноптилолит, морденит, фожазит, шабазит. В отличие от кристаллогидратов (серпентинов и бёмита), также выделяющих значительное количество воды при нагреве, цеолиты поглощают и выделяют не только воду, но и другие молекулы без изменения кристаллической структуры.
Цеолит — (греч. zéo — киплю и lithos — камень, т. е. «кипящий камень») — большая группа близких по составу и свойствам минералов и синтетических веществ, служащих для разработки и производства ряда каталитических препаратов автохимии.
Химический состав цеолитов в обобщенном виде может быть представлен формулой: Mx/n (AlO2) x. (SiO2) y. zH2O, где М — катионы с валентностью n (обычно это Na+, K+, Ca2+, Ba2+, Si4+, Mg2+), z — число молекул воды, а отношение у/х может изменяться от 1 до 5 для различных видов цеолитов. Например, основной состав природных цеолитов Сокирницкого месторождения,%: SiO2 — 71,5; Al2O3 — 13,1; Fe2O3 — 0,9; MnO — 0,19; MgO — 1,07; CaO — 2,1; Na2O — 2,41; K2O — 2,96; P2O5 — 0,033; SO3 — следы. В качестве основных микропримесей могут содержаться: никель, ванадий, молибден, медь, олово, свинец, кобальт и цинк.
Цеолиты имеют строго определенный диаметр входных отверстий (от 0,3 до 1 нм в зависимости от вида минерала) и являются высокоактивными адсорбентами.
В настоящее время известно более 600 видов цеолитов и только около 50 из них имеют природное (естественное) происхождение. Искусственные или синтетические цеолиты имеют классификацию А; Х и Y . Цеолиты, вследствие особенностей своей структуры, обладают высокой адсорбцией — концентрированием вещества из газовой фазы на поверхности твердого тела (адсорбента) или в порах, образуемых его структурой. При использовании цеолитов в качестве адсорбирующего элемента происходит молекулярно — ситовый отбор при сорбции молекул из газа в жидкости, позволяющей разделять молекулярные смеси в интервале размера молекул 10…20 нм.
Рассмотрим рекомендации по применению некоторых металлокерамических материалов и механизм их восстанавливающего действия.
Для машин с разной степенью износа и пробегом от 50 000 км пробега и выше рекомендуется:
1. Слить старое масло, промыть двигатель.
2. Залить новое масло и прогреть двигатель до температуры охлаждающей жидкости 70…80 °C.
3. Исключить подачу топлива в карбюратор и выработать из него весь бензин.
4. Вывернуть свечи и через каждое свечное отверстие ввести в каждый цилиндр по 5…10 мл состава.
5. Не вворачивая свечей, стартером 5…6 раз прокрутить двигатель в течение 10 с, каждый раз с интервалом между попытками в 30…40 с.
6. Ввернуть свечи, подать топливо в карбюратор и запустить двигатель.
7. Оставшийся состав влить в заливную масляную горловину. Поднять обороты коленчатого вала двигателя до 3000…3500 об/мин и поддерживать их в течение 10…15 мин. По указаниям производителей, это очень важный момент обработки, так как снижение оборотов двигателя или его остановка может существенно повлиять на результаты обработки.
8. Произвести замену масляного фильтра после пробега 1500…2000 км. Моторное масло можно не менять до 50 000 км пробега, чем обеспечиваются наилучшие показатели обработки.
Однако единого мнения по применению геомодификаторов нет. По одним источникам, геомодификаторы рекомендуется применять после пробега около 1000 км, что обосновывается лучшими условиями и наглядностью обработки.
Другие рекомендуют применять геомодификаторы не только для автомобилей с пробегом, но и для новых автомобилей. В этом случае предлагается вводить состав непосредственно в моторное масло, при соблюдении остальных требований к обработке, а смену масляного фильтра рекомендуется производить после 5…6 тыс. км пробега.
Восстановление и упрочнение подвижных соединений металлокерамическими материалами осуществляется за счет формирования на поверхностях трения структур повышенной прочности, подавления процессов водородного изнашивания и охрупчивания металла, повышения термодинамической устойчивости системы поверхность трения — смазочный материал. Поверхностно — активные вещества (ПАВ) металлокерамического восстановителя после введения в системы двигателя подготавливают поверхности трения химически (катализ) и физически (суперфиниш), очищая их от нагара, оксидов, отложений и т. д.
Для получения необходимого эффекта от применения геомодификатора должно произойти его разрушение по формуле
Mg6{Si4O10}(OH) 8 = 3Mg2{SiO4} + SiO2 + 4H2O,
до этого времени он (например, серпентин) работает, как простой абразив.
После разложения геомодификатора в очищенную зону трения вместе с катализатором происходит внедрение его керамических и металлокерамических частиц (фибрилла). Зона контакта обедняется свободным водородом, а поверхностные слои вследствие диффузии изменяют свою структуру и увеличивают прочность в несколько раз. В процессе дальнейшей работы на поверхностях трения формируется органо — металлокерамическое покрытие, частично восстанавливающее дефекты поверхности трения и обладающее высокими антифрикционными и противоизносными свойствами.
Металлокерамический защитный слой, который получается на поверхностях трения, может обладать уникальными триботехническими характеристиками:
— микротвердость 65…72 HRC;
— шероховатость 0,3…0,1 мкм;
— коэффициент трения 0,003…0,007;
— температура разрушения 1700…2000 °C.
При применении геомодификаторов в ДВС наблюдается некая оптимальная точка (момент времени) в процессе обработки, когда регистрируемый эффект достигает своего оптимального значения. Продолжение процесса обработки, как указывают ряд исследователей, может привести к ряду негативных последствий.
Наряду с высокой эффективностью геомодификаторов и РВС — технологии, остается множество нерешенных вопросов, связанных с их применением.
1. Так, исследованиями, проведенными в триботехнической лаборатории фирмы «ВПМАвто» установлено, что геомодификаторы увеличивают износ хромированного кольца в паре трения «хром — чугун» в два раза по сравнению с базовым вариантом, а также пары трения «вкладыш — шейка коленчатого вала». Это является следствием вдавливания (вкрапления) в более мягкой материал неразложившихся частиц геомодификатора и их функционирования как микрорезцов, закрепленных в пластичной матрице.
2. При обработке металлокерамическими материалами наблюдается выделение свободной воды. По данным, приведенным во втором томе советско — польского издания «Справочник по триботехнике. Смазочные материалы, техника смазки, опоры скольжения и качения», повышение ее содержания в моторном масле всего на 5 % приводит к росту интенсивности изнашивания до 10 раз.
3. Отмечается нарушение температурной стабильности обработанного двигателя вследствие дополнительного теплового сопротивления металлокерамического слоя (кстати, как и полимерного) отводу тепла от поршня через поршневые кольца. Всё это может привести к перегреву двигателя и его отказу, особенно на режимах перегрузок.
4. По этой же причине наряду со снижением концентраций в отработавших газах окиси углерода СО и углеводородов СН, наблюдается почти двукратный рост выхода окислов азота NО.
5. При применении РВС — технологии в периоды приработки из‑за возрастающих температур отмечаются случаи дополнительного сверхнормативного выгорания масла и отпуск (снижение прочностных свойств) термообработанных поршневых колец.
6. Большинство геомодификаторов представляют собой не что иное, как взвесь порошковых материалов в соответствующем носителе (осветительном керосине, минеральном масле и т. д.), которая, как и порошковые реметаллизанты, может задерживаться фильтрами, центрифугироваться и выпадать в осадок. Так, например, при безразборном восстановлении тепловозных дизелей разработчиками рекомендуется на период обработки вообще исключать из системы смазки фильтры тонкой очистки (центрифуги) моторного масла.
Поэтому при применении геомодификаторов необходимы следующие дополнительные рекомендации:
1. Показанием к применению должны быть результаты технического диагностирования двигателя, указывающего на то, что степень износа систем, подлежащих обработке препаратом, составляет не менее 50 %.
2. Если пробег после замены масла и масляного фильтра составил более 5 000 км, либо качество моторного масла не соответствует эксплуатационным требованиям, а также при наличии отказов деталей в узлах и механизмах автомобиля, подлежащих обработке, то восстановительная обработка не рекомендуется.
3. Качественная обработка геомодификатором требует строгого квалифицированного инструментального контроля первого этапа процесса восстановления, поэтому такую обработку целесообразнее и безопаснее проводить в автосервисах с получением гарантий качества обработки.
4. На наш взгляд, геомодификаторы целесообразнее всего применять в элементах трансмиссии и ходовой части. Обладая высокими водо- и грязеотталкивающими свойствами, они могут существенно понизить износ и температуру в зоне трения, в том числе и в открытых узлах, таких как шарниры карданных валов, цепная передача мотоциклов и т. д.
В заключение данного раздела следует отметить, что главной проблемой, существенно сдерживающей применение препаратов на основе геомодификаторов, является нестабильность их свойств, а как следствие, результатов обработки. Все это, прежде всего, обусловлено минеральной основой добавок с наличием множества неконтролируемых примесей и загрязнений. Разработка для таких присадок синтетических компонентов, свободных не только от балластных, а, прежде всего, от возможных абразивных компонентов, способна открыть новые перспективы для их широкого применения в автомобильной промышленности.

Комментирование и размещение ссылок запрещено.